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AN OPTIMALITY CRITERION FOR SIZING MEMBERS OF HEATED

STRUCTURES WITH TEMPERATURE CONSTRAINTS

G. Venkateswara Rao,* Charles P. Shore,
and R. Narayanaswami¥#¥
Langley Research Center

SUMMARY

A thermal optimality criterion is presented for sizing members of heated
structures with multiple temperature constraints. The optimality criterion is
similar to an existing optimality criterion for design of mechanically loaded
structures with displacement constraints. Effectiveness of the thermal opti-
mality criterion is assessed by applying it to one- and two-dimensional thermal
problems where temperatures can be controlled by varying the material distribu-
tion in the structure. Results obtained from the optimality criterion agree
within 2 percent with results from a closed-form solution and with results from
a mathematical programing technique. The thermal optimality criterion augments
existing optimality criteria for strength and stiffness related constraints and
offers the possibility of extension of optimality techniques to sizing structures
with combined thermal and mechanical loading.

INTRODUCTION

Aerospace structures may be subjected to severe mechanical and thermal
loading. Efficient designs for such structures increasingly require use of
automated design methods to determine minimum-mass structural arrangements that
satisfy several mechanical and thermal design requirements. Both mathematical
programing methods (ref. 1) and optimality criteria (refs. 2 to 4) have been
proposed for automated design of mechanically loaded structures with strength,
stiffness, and flutter constraints.

Recent studies have focused on resizing procedures for structures under
combined mechanical and thermal loading with strength constraints. In refer-
ences 5 and 6, steady-state thermal effects were included in an implicit fashion
through strength requirements; however, temperatures in the structure were not
updated as a result of structural resizing and significant unknown differences
can exist between final and initial temperature distributions in the structure.
Explicit thermal design requirements and updating of temperatures during the
resizing process were included in a finite-element-based mathematical programing
method described in reference 7 where membrane element thicknesses and bar ele-~
ment areas were used as design variables to adjust average element temperatures.

#NRC-NASA Resident Research Associate.
¥%01d Dominion University, Norfolk, Virginia.



The present paper presents an optimality criterion which satisfies temper-
ature requirements and permits updating of structural nodal temperatures during
resizing. The optimality criterion resizing formulas are similar to those of
reference 3 for design of mechanically loaded structures with displacement con-
straints. Only temperatures (not stresses) are considered in the present paper,
and use of the criterion is illustrated by applying it to several examples with
both one- and two-dimensional heat-transfer characteristics. An existing
closed-form solution (ref. 8) is used to assess the effectiveness of the opti-
mality criterion for one-dimensional problems, and a mathematical programing
technique described in references 9 and 10 is used for a similar assessment for
two-dimensional problems.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements
and calculations were made in U.S. Customary Units.

A area of bar element

a = A/Ag

a general design variable

Bj Biot number, hip2/kA, for bar and h1,2/kt, for plate
b convergence parameter

c,cq1,c2,03 points on bar and plate at which constraints are applied
Bﬂ conductance matrix

F constraint function

Dﬂ convective matrix

h convective heat-transfer coefficient

k thermal conductivity

1p length of bar

lp characteristiq length of plate

') length of bar element

m mass of structure

Np number of bar elements



Ng heat-generation number, qlb%/kAoTo for bar and qlp/ktoTo for plate

Np number of plate elements

N7 number of points at which temperatures are constrained
{a} unit thermal load vector

q rate of heat input

{q}1 thermal load vector

{q}g convection load vector

S surface area of plate element

T temperature

T = T/To

{T} temperature vector

{Tq} temperature vector corresponding to {Q}

T, ambient temperature

T, nondimensional ambient temperature

To specified temperature at point ¢

T&,Te1,552,f03 specified nondimensionalized temperatures at constraint

points ¢, ¢¢, ¢, and c3
t thickness of plate element
v volume of structure

V/Aolp for bar

! = V/tolp? for plate
X,y Cartesian coordinates
X,y nondimensional Cartesian coordinates, x/lp,p and y/lp,p,
respectively
Y step-size parameter
Lagrangian multiplier
p density



Subscripts:

b bar

i ith bar element

J jth bar element

k number of constraint point
o] reference value

p plate

OPTIMALITY CRITERION
An optimality criterion for thermally loaded structures is developed from
the general treatment presented in reference 3 for problems which can be charac-

terized by an objective function m that is dependent on a group of design vari-
ables aj

m = m(ai) (1)

and an equality constraint function that may be implicitly dependent on the
design variables aj

F(aj) - Fg = 0 (2)

The quantity F, is the desired value of F(aj) at point ec.

To obtain the necessary condition for a minimum of m subject to equa-
tion (2), first append the constraint condition to the objective function with
a Lagrangian multiplier

m* = m(a;) + X[F(ai) - Fé] (3)
and then equate to zero the first partial derivatives of m¥*® with respect to

the design variables aj

dm* om 3 aF 0 (1)
da;  da; | dag

Equation (4) is also called the optimality criterion.



For two-dimensional thermally loaded structures the response quantity F(aj)
is the structural temperature and is given by the following partial differential
equation and the appropriate thermal boundary conditions:

9 aT 3 oT
—lky — +_ky— + Q=20 (5)
ox ox oy oy

where ky and ky are the material thermal conductivities in the x- and
y-directions, respectively, and Q 1is the applied thermal loading.

Equation (4) is specialized in reference 3 for finite-element represen-
tations of mechanically loaded structures with deflection constraints. The
finite-element representation allows both m(aj) and 3F(aj)/da; to be
expressed as sums of individual member contributions. As a result, the simul-
taneous equations represented by equation (4) uncouple and can be solved by
simple recursive formulas.

For structures with both convective and conductive modes of heat transfer
present, equation (5) can be written in finite-element matrix notation as

[p]{1} = {a}1 + {a}2 (6)

where [ﬂ] is a heat-transfer matrix and includes terms for both convective
and conductive heat transfer, {T} is a vector of unknown temperatures, and
{q}1 and {q}2 are applied thermal and convective heat load vectors, respec-
tively. Since equation (6) is analogous to the corresponding equation for
displacements in mechanically loaded structures and since use of thermal finite
elements also permits uncoupling of the simultaneous equations represented by
equation (4), the optimality criterion for deflection constraints developed in
reference 3 can be adapted to problems with temperature constraints. Appro-
priate expressions for the optimality criterion and resizing formulas for bar
and plate elements are now restated in terms of thermal quantities. Equation
numbers from reference 3 are also given. For clarity and completeness details
of the adaptation are presented in the appendix.

Optimality Criterion and Resizing Formulas for a
Single Temperature Constraint
For a single temperature constraint the optimality criterion given by
equation (4) can be expressed in a form similar to equation (U44) of reference 3
as
ej

—_ =1 (7
Pb



for bar elements and

B (8)

for plate elements where

M1 [¢alohs
ei = %1A; (9)
and
T
Mrh;le] Tl
°3 ® Sit: (10)
NAN|

In the expressions for e; and es;, A 1is the unknown Lagrangian multiplier,
{T} is the vector of nodal temperatures obtained by solution of equation (6)
for the applied thermal loading, [C] is the elemental conductivity matrix,
{TQ} is the temperature vector obtained by solution of equation (6) for a unit
thermal load applied at the constraint point ¢, £; and A; are the length
and area of the ith bar element, respectively, and Sj and t3 are the surface
area and thickness of the jth plate element, respectively. The subscripts i
and j on the quantities {T}, [C], and {Tg} indicate that these quantities
are associlated with the ith bar element or the jth plate element.

The resizing formula given by equation (48) of reference 3 is rewritten

€4 \
Aj ne1 = 5; Aj n (1)

as

for bar elements and

ej Y
ti,ne1 = <;;> tj,n (12)

for plate elements, where n 1is the iteration number and Yy is a paramter that
controls the step size.
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Optimality Criterion and Resizing Formulas for
Multiple Temperature Constraints
If the structure has Nt temperature constraints at points ¢y

(k =1,2, . .., Np), Np Lagrangian multipliers are required, and equa-
tion (22) of reference 3 can be rewritten for bar elements as

E.
2o (13)
b

and for plate elements as

E.
= =1 (14)
Pp
where
Nt T
Ml THECi{Tol 1,k
E; = Z — (15)
LiA5
=1
and
Nt T
Ml T} 50CT 5Tt 5,k
Ej = (16)
Sit;
k=1
The resizing formulas become
E; \Y
Aj n+t = <5€> Aj n Q7
for bar elements and
EJ Y 8
ty,me1 = (5= ti,n (9
Pp

for plate elements.



In the resizing formulas the Lagrangian multipliers are determined by
equation (7) of reference 4 rewritten as

.\
Xk’n‘i"] = T K xk!n (19)
C,

where Ty and Tc,k are the temperature and the desired temperature at the
kth constraint point, respectively, and b 1is a convergence parameter. Equa-
tion (19) also permits consideration of inequality constraints of the form

(20)

since for passive constraints successive values of Ay become small and eventu-
ally approach zero and their impact in the resizing formulas becomes negligible.

The number of iterations required to obtain a minimum-mass design depends
on the value of the step-size parameter Y in equations (11), (12), (17), and
(18) and on the value of the convergence parameter b in equation (19). Gener-
ally, a trial-and-error technique is used to find values of Y and b which
lead to minimum-mass designs with the fewest iterations. Since these parameters
may be problem dependent, new values of Y and b should be determined for
each new type of problem. To start the resizing process, an initial vector of
design variables and initial values of Ak are required in the resizing for-
mulas. As a general procedure, for the problems considered herein, a unit
initial design vector and unit initial values of Ay are used to start the

process.

RESULTS AND DISCUSSION

The effectiveness of the optimality criterion for problems with temperature
constraints is assessed by applying the resizing formulas presented in the pre-
vious section to the following problems involving uniform heating:

(1) Cooling fin: A one-dimensional heat conduction problem with a single
temperature constraint. Results for no convective heat loss are presented to
demonstrate the effect of both the step-size parameter Y and the convergence
parameter b on the resizing process and to assess effects of discretization
on convergence to the closed-form solution for the minimum-mass design of cooling
fins presented in reference 8. Effects of convective heat loss on the minimum
fin mass for a given heating condition are also presented.

(2) Square plate: A two-dimensional heat conduction problem with a single
temperature constraint. Effects of convective heat loss on minimum plate mass
for given heating conditions are considered, and results from the optimality
criterion are compared with similar results obtained from the mathematical pro-
graming technique of usable feasible directions described in references 9 and 10.
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(3) Triangular plate: Similar to the square-plate problem except that
convective heat loss is not included and effects of multiple temperature con-
straints are considered.

(4) Combined plate and bars: A problem with both one- and two-dimensional
heat conduction paths and with multiple temperature constraints. Convective
heat losses are not considered; however, two materials with different mass
densities and thermal conductivities are used for the plates and bars to deter-
mine a minimum-mass solution for a problem with mixed materials.

Cooling Fin

The geometry of a cooling fin with the associated boundary conditions is
shown in figure 1. Heat is generated in the fin at a constant rate of q per
unit length, and convective heat loss may occur over both the top and bottom
fin surface. The end X = 0 is maintained at a nondimensional temperature of
zero, and the insulated end (point ¢) is constrained to a given value. The
objective is to minimize the fin mass (or volume for constant material density)
while satisfying the constraint condition.

One-dimensional thermal finite elements with uniform areas and cubic tem-
perature distributions were used to model the cooling fin to determine the tem-
perature distribution. The elements have two nodes with T and dT/dx as
nodal degrees of freedom.

Results without convective heat loss.- The cooling fin problem without
convective heat loss was used to determine values for the step-size parameter vy
and the convergence parameter b in the resizing formulas (eqs. (11) and (19)).
Based on results from references 3 and 4, a value of 0.5 was initially used for
Y. The fin was idealized by five elements and minimum-volume solutions were
obtained for a heat-generation number Ng = 1.0, a constraint temperature _

Teo = 0.3, and values of b from 0.1 to 0.9. Results for the fin volume V,
temperature T, at the constraint point, and the number of iterations required
to reach convergence are given in table I as functions of b. The number of
iterations for convergence are also plotted as a function of b in figure 2.
The data indicate that each solution converges to the same minimum fin volume;
however, values of b from 0.5 to 0.7 require the fewest iterations to reach
converged values of the fin volume and simultaneously satisfy the temperature
constraint to four significant digits. The convergence parameter b = 0.5

was selected as a best value for this problem. Additional solutions were then
obtained for b = 0.5 and values of the step-size parameter <y of 1 and 1/3.
Results from these solutions revealed that vy = 1 caused the resizing process
to diverge and that +y @ 1/3 increased the number of iterations required for
convergence. Since the other problems considered in this investigation were
similar to the fin problem, values of y =@ 0.5 and b = 0.5 were used for the
remaining calculations. Values of these parameters, which produce most rapid
convergence, however, are problem dependent and should be redetermined for
problems which differ significantly from those considered herein.

To study the effects of discretization on the finite-element procedure
used for this problem, the fin was modeled with 5, 10, and 20 elements and



minimum fin volumes were determined for Ng = 1.0 and Té = 0.3. The results
are given in table II and figure 3 and are compared with similar results from
the closed-form solution of reference 8. Converged values of the minimum fin
volume as a function of the number of elements are shown in figure 3(a). The
finite-element results approach the closed-form solution slowly as the number
of elements is increased; the difference between the two solutions decreases
from 2.4 to 1.4 percent as the number of elements increases from 5 to 20. Fin
volume V and constraint temperature T, obtained from the 20-element solution
are shown in figures 3(b) and 3(c), respectively, as a function of iteration
number. The data indicate that good convergence for V and T, is obtained
in 5 to 10 iterations. More detailed results are given in table II.

Fin cross-sectional area distributions for the 5-, 10-, and 20-element
solutions are compared with the area distribution from the closed-form solution
in figure 4. The area distributions from the optimality criterion method slowly
approach the closed-form solution as the number of elements increase. The
20-element solution for the fin volume is within 2 percent of the closed-form
solution. However, near the fin root, the areas given by the optimality crite-
rion method are less than the closed-form solution. Near the tip, the areas
given by the optimality criterion method are greater than the closed-form solu-
tion. A finer mesh size near the fin tip or use of tapered elements could
improve the agreement between the finite-element solution and the closed-form
solution; however, since the objective of this investigation is to demonstrate
the use of the optimality criterion, such refinements are considered
unwarranted.

The fin temperature distribution from the 20-element solution is compared
with the closed-form solution in figure 5. At the center of the fin, the
temperatures given by the finite-element solution are approximately 6 percent
greater than the temperatures given by the closed-form solution. Again, this
difference is attributable to use of constant-area elements and could be removed
by use of a finer mesh size or tapered elements.

Results with convective heat loss.~ To determine the influence of terms
in the heat-transfer matrix [D], which are not functions of the design vari-
ables (see discussion in the appendix), solutions for minimum fin volume were
obtained by using 5, 10, and 20 elements for values of Bj from O to 0.5 and
Ng = 1.0, T, =0.3, and Ty = 0.05. Converged values of minimum fin volume
were obtained within 20 iterations for each idealization and value of Bj.
(See table III.) Since converged solutions were obtained within 20 iterations,
effects on the resizing process of including constant terms in the heat-transfer
matrix [D] appear to be negligible for this problem. Area and temperature
distributions from the 20-element solution for B; = 0 and 0.5 are shown in
figures 6(a) and 6(b), respectively. The variation of minimum fin volume V
with By 1is shown in figure 7. These results indicate that the minimum fin
volume decreases and temperatures in the fin increase as convective heat losses
increase.
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Square Plate

The effectiveness of the optimality criterion resizing formulas for two-
dimensional problems with and without convective heat losses was assessed by
obtaining minimum-mass (minimum volume for constant-mass density) solutions
for a uniformly heated square plate with a single temperature constraint. Two-
dimensional triangular thermal finite elements of constant thickness with a
quadratic temperature distribution were used to determine the temperature
response of the plate. The elements had six nodes, three at the vertices and
three at the midpoints of the sides; temperature was the nodal degree of free-
dom. The geometry, finite-element subdivision, and thermal boundary conditions
for the plate are shown in figure 8. Temperature at point ¢ was constrained
to T, = 10.0 and convective heat loss to the ambient atmosphere could occur
from both top and bottom plate surfaces. Minimum-volume solutions were obtained
for Ng = 1.0, T, = 5.0, and values of Bj = 0 (no convective heat loss),
0.025, and 0.075. Iteration histories for the plate volume and temperature at
the constraint ‘point are given in table IV. Results from the mathematical pro-
graming technique of references 9 and 10 are also shown.

Results without convective heat loss.- Results in table IV indicate that
in the absence of convective heat loss converged values of the plate volume and
temperature at the constraint point are obtained with 20 iterations and agree
with the mathematical programing results within approximately 1 percent. The
thickness distribution corresponding to the minimum-volume solution for the
finite-element mesh shown in figure 8 is presented in figure 9. Since the
plate is symmetrical about the diagonal, only half of the plate is shown. The
greatest material thickness is required along the insulated edges of the plate
where the thickness increases from the constraint point to the heat sink. The
temperature distribution in the plate for the minimum-volume solution is shown
in figure 10 and indicates that, although the temperature constraint at point ¢
is satisfied, the temperature at one point on the diagonal is approximately

1
25 times the constraint temperature. Thus, if it is important that temperatures

over the entire plate do not exceed the value at point ¢, then temperatures
at additional points must be constrained. Thickness and temperature distri-
butions from the mathematical programing technique were virtually the same as
those from the optimality criterion.

Results with convective heat loss.- Iteration histories of V and T
at the constraint point for the square plate for B; = 0 and By = 0.075 are
shown in figures 11(a) and 11(b), respectively. In contrast to the cooling fin
problem, where convergence occurred monotonically, convergence for the two-
dimensional plate problem is oscillatory. Furthermore, the presence of the
design-variable independent convective terms in the heat-transfer matrix causes
the temperature response in the plate to become less sensitive to changes in
the design variables and increases the number of iterations required for con-
vergence. Results in table IV indicate that the optimality criterion yields
values of V and T at the constraint point for Bj m 0.025 and 0.075 that
agree within approximately 1 percent with similar values from the mathematical
programing technique.
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Triangular Plate

The geometry, boundary conditions, and finite-element idealization for a
uniformly heated triangular plate are shown in figure 12. The triangular ele-
ments described previously were used to determine temperature response for the
plate. Convective heat losses were not included in this problem. Minimum-
volume solutions were obtained for the plate for Ng = 1.0 with temperature
constraints at points ¢4, c¢p, and c3. Two constraint combinations were con-
sidered; namely, (1) point c3 was constrained to Tq3 = 10.0 with points ¢4
and c¢p unconstrained and (2) Tg3z = 10.0 with points ¢q and cp con- _
strained to Tgq1 = Tep = 5.0. Iteration histories for minimum plate volume V
and temperatures at the constraint points from the optimality criterion for
the two constraint combinations are shown in tables V(a) and V(b), respectively.
Final results from the mathematical programing technique of reference 9 are also
shown. A comparison of results from the optimality criterion and the mathemati-
cal programing technique indicates that the two solutions for the minimum plate
volume and constraint temperatures agree within about 1 percent. 'The iteration
histories for plate volumes V and temperatures at the constraint points are
shown in figures 13(a) and 13(b), respectively. Inclusion of the additional
temperature constraints has two significant effects: (1) Since the constraint
temperature at points c¢q and c¢p 1is less than the corresponding temperature
from the single constraint solution, additional plate volume is required to
satisfy the constraints; and (2) the number of iterations required to reach a
converged plate volume and simultaneously satisfy the multiple temperature con-
straints is almost double that for the single constraint case.

Temperature distributions for the single and multiple temperature con-
straint conditions are shown in figures 1U4(a) and 14(b), respectively. Just
as in the case of the square plate, when the temperature is constrained only
at point c3, the temperature at other points on the plate greatly exceed the
constraint temperature. The additional constraints at points c¢q and e
improve but do not eliminate this condition. If it is important that temper-
atures over the entire plate not exceed the value at point c¢3, temperatures
at additional points must be constrained.

Combined Plate-Bar Problem

To illustrate further the usefulness of the optimality criterion, it was
applied to the combined plate-bar problem shown in figure 15(a). Titanium was
used for the plate material and aluminum was used for the bars. This structure
was representative of a thermal design problem where one material satisfied
strength requirements and the other acted as a highly efficient conductor to
transfer the incident heat to a heat sink. The structure was uniformly heated
at a rate of q = 34.1 kW/m2 (10 800 Btu/ft2-hr) and was idealized as shown in
figure 15(b) by eight of the previously described triangular thermal finite
elements and four bar elements. Three noded constant-area bar elements with
quadratic temperature distributions were used to mecdel the bars to insure

12



compatibility between temperatures in the two types of elements. Temperatures
in the structure were constrained not to exceed 260° C (500° F). Thus, based
on the finite-element idealization, this problem had 20 temperature constraints.

A converged solution for the minimum-mass configuration that satisfied the
temperature constraints was obtained with 90 iterations. The large number of
iterations required for convergence results from the large number of constraints
in the problem. For the idealization used in the problem; a minimum mass of
0.17 kg (0.37 1lbm) was obtained. When only the titanium plate was used, a
minimum mass of 0.60 kg (1.33 1bm) was required to satisfy the multiple temper-
ature constraints. Thus, addition of the aluminum bars for the purpose of heat
conduction reduced the structural mass by about 70 percent.

The plate thickness distribution and bar area distribution for square bars
corresponding to the minimum-mass configuration are shown in figure 16. Since
the problem is symmetric, only half of the structure is shown. Nodal tempera-
tures for the minimum-mass solution are given in table VI. A complete picture
of the temperature field in the structure is shown in figure 17. Since the
nodal temperatures presented in table VI are at discrete points, the tempera-
tures shown in figure 17 are calculated over the entire plate at very small
intervals. Again, because of the symmetry in the problem, temperatures are shown
for only half of the structure. The sharp dips in the temperature distribution
near the aluminum bars occur because the bars provide a better conduction path
to the heat sink than the titanium plate.

CONCLUDING REMARKS

An optimality criterion is presented for minimum-mass design of heated
structures with constraints on temperature. The thermal optimality criterion
is similar to an existing optimality criterion for mechanically loaded struc-
tures with displacement constraints. Resizing formulas from the thermal opti-
mality criterion are applied to both one- and two-dimensional problems where
temperatures can be controlled by varying material distribution in the structure.
A comparison of results obtained from the optimality criterion with results from
a closed-form solution and with results from a mathematical programing technique
reveal that the optimality criterion results agreed within 2 percent of those
from the other methods.

For the one-dimensional problems the optimality criterion converges mono-
tonically. However, for the two-dimensional problems convergence occurs in
an oscillatory manner, and the number of iterations required for convergence
_increases significantly with either the number of temperature constraints or
degree of convective heat loss present in the problem.

The thermal optimality criterion is used to size components of a heated
structure composed of titanium plates and aluminum bars with temperatures con-
strained to 260° C (500° F) or less. Based on thermal considerations only,
adding aluminum bars reduces the combined mass by about 70 percent of that for
titanium plates alone.

13



The thermal optimality criterion augments optimality criteria for mechan-
ically loaded structures with strength and stiffness related constraints and
offers the possibility of extension of optimality techniques to resizing struc-
tures with combined thermal and mechanical loading.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

August 9, 1977
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APPENDIX

THERMAL OPTIMALITY CRITERION
Single Temperature Constraint

For structures with both conductive and convective modes of heat transfer
present, the equation governing temperature response in the structure can be
written in finite-element matrix notation as

(o {1} = {a}q + {a}> (A1)

where ﬂﬂ is a heat-transfer matrix composed of terms for both conductive and
convective heat transfer, {T} is a vector of unknown temperatures, and {q}1
and {q}2 are applied thermal and convective heat load vectors, respectively.
The matrix ([D] can be written as

(0] = [c] + (H (42)

where [C] is a conduction matrix and [H] is a convection matrix. For struc-
tures which can be represented by Nj bar elements of constant area and Np
plate elements of constant thickness, the total mass can be expressed as

Np

Nb
m = z PphAily + Z ppthj (A3)
i=1 j=1

where pp and pp are the mass densities of the bar and plate materials,
respectively; A; and &3 are the cross-sectional area and length of the
ith bar element, respectively; tj and S3 are the thickness and surface
area of the jth plate element, respectively. The design variables are Aj
and tj.

The temperature at some point ¢ on the structure is constrained to a
specified value T,. The equation of constraint is

T-T,=0 (AY)

or

{r}T{q} - T =0 (A5)
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APPENDIX

where {T} is the nodal temperature vector obtained by solution of equation (A1)
and {Q} is a vector of zeros except for a value of unity at the node corre-
sponding to point c¢. The optimality criterion is given by equation (4) in the
main text and is rewritten in terms of the thermal problem as

of T} T
Ppli + A {q} = (46)
aAi
for bar elements and
af{t}T
Si + A Q = (A7)
Ppoj atj { }
for plate elements where A is an unknown Lagrangian multiplier.
The vector {Q} can be written as
{a} = [D]{rg} (48)

where {TQ} is a temperature vector obtained by solution of equation (A1) for
a unit thermal load applied at point c¢. Replacing {Q} in equations (A6) and
(A7) with its equivalent from equation (A8) gives

o{T}T
ppli + A i [0] {1} = 0 (49)
™
and
of{T}T
pij + A {—}[DJ{TQ} =0 (A10)

Btj

as expressions of the optimality criterion for bars and plates, respectively.
Expressions for the partial derivatives of the temperature vector can be

obtained by differentiation of equation (A1). Note that, for the type of ther-
mal finite elements used to model the structure, only the conduction matrix Bﬂ

16
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is proportional to A; and tj. Differentiation of equation (A1) with respect
to A; gives

afc a{1}
T D =0 (A11)
Sl s e
or
T} T 7 3[C);
A D St (a12)
94y 45
Similarly for tj
a{T}T 7 3[C] ;
7} D] = -{1}; X (A13)
atj Btj

Since, for the type elements used herein, the conduction matrix Bﬂ is pro-
portional to A; and tj, the partials of [C]j with respect to A; and tj
can be written as

a[cly [cls
= (A1)
A4 A;
and
alcly [dj
2. (A15)
Btj tj
Thus, the optimality criterion can finally be written as
r [
ppri - MTh i —{Tgli = 0 (416)
i
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for bars and

r [ ;

PpS;y - ATl; —tj {rgly = 0 (A17)

for plates. The subscripts i and j on the quantities {T}, [Q], and {TQ}
indicate that those quantities are associated with the ith bar element or jth
plate element.

Multiple Temperature Constraints
If the structure has N7 temperature constraints at points ¢y
(k =1, 2, .. ., Nr), the constraint equations are written as

{T}Taly - To,k = © (k=1,2, ..., Np) (218)

The functional given by equation (3) in the main text becomes

m* = Pphili + PptiSs + Ay {T}T{Q}k - To k (A19)
| SN ’
i=z1 Jj=1 k=1

where lk are the unknown Lagrangian multipliers for each constraint k.
Application of the same procedure used for a single constraint leads to the
optimality criterion for multiple constraints

N

£ r (€3
Pply - Z Med T {rglik =0 (A20)
A3
k=1
for bars and
Np
r [C};
PpSy - Z Nl hy rvn Tols,x = 0 (A21)
k=1 J

for plates.
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TABLE I.- EFFECT OF b ON CONVERGENCE OF RESIZING PROCESS

FOR COOLING FIN PROBLEM IDEALIZED WITH FIVE ELEMENTS

[Ng = 1.0; By = 0; T, = 0.3
Converged Converged value
value of volume of temperature No. of iterations
v at constant point | to reach convergence
T
A 1.5168 0.3000 139
.3 1.5168 .3000 38
5 1.5168 .3000 16
.7 1.5168 .3000 16
.9 1.5168 .3000 23

TABLE II.- EFFECT OF FINITE-ELEMENT MESH ON CONVERGENCE OF

RESIZING PROCESS FOR COOLING FIN PROBLEM

@G = 1.0; Bi = 0;

Tc = 0.3;

Y = 0.5;

b=0.5]

5 elements 10 elements 20 elements
Iteration _ _ _ _ _ _
'} To v Ta v Te

1 0.6719 | 0.6691 {0.6686 | 0.6674 | 0.66T7T4 | 0.6669

5 1.4441 .3148 | 1.4342 L3146 | 1.4306 .3146

10 1.5145 .3004 |1.5039 .3004 | 1.5001 .3004

15 1.5167 .3000 |1.5061 .3000 | 1.5022 .3000

20 1.5168 .3000 | 1.5061 .3000 | 1.5023 .3000

(a) 1.4815 .3000 | 1.4815 .3000 | 1.4815 .3000

40btained from closed-form solution of reference 8.




FOR COOLING FIN

TABLE ITI.- EFFECT OF CONVECTION ON MINIMUM VOLUME

[Ng = 1.05 T, = 0.3; T, = 0.05; 20 iterations]
No. of Converged fin volume, v
elements
Bi=0 Bi=0'05 Bi=0.2 Bi=05
5 1.5168 1.4878 1.4005 1.2232
10 1.5061 | 1.4774 1.3906 1.2147
20 1.5023 1.4736 1.3870 1.2115

21
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TABLE IV.- EFFECT OF CONVECTION ON MINIMUM VOLUME FOR HEATED

SQUARE PLATE WITH SINGLE TEMPERATURE CONSTRAINT

[NG = 1.0; Tp = 10.0; T,

Iteration Plate
volume
0 1.0000
1 L7521
2 L1787
3 .0u478
y .0259
5 .0268
6 L0375
7 .0512
8 .0588
9 L0574
10 .0521
11 L0475
12 .0455
13 .0l453
14 .0U61
15 .0470
16 L0476
17 L0477
18 .0476
19 L0474
20 .ouT7Y
21 L0473
22 L0474
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4o
41
42
43
by
45
46
47
48
49
50
51 \J
(a) .0U79

Temperature
at constraint
point

0.59

2.99
10.70
19.80
18.80

\J
9.98

30btained by method of references 9 and 10.

= 5.0]

B; m 0.025
v
1.0000 [}
.7890
L1970 2
.0523 9
.0246 16
.0199 19
.0239 16
.0347 12
.0491 9
L0581 7
L0571 7
.0505 8
L0442 9
.0405 10
.0395 10.
.0403 10
.0419 10
.03y 9
.0443 9
.o4uy 9
L0444y 10
.O4hy 10
.04y 10
.ohyy 9
L0442 9
.0439 9
.0436 9
.03y 10
.0434
L0435
L0437
.0439
.olu0 9
.0439 9
.0u38 9
.0437 9
L0436 10
.0436
L0436
.0437
.0438
.0u38
.0438 9
.0438 9
L0437 10
.04y2 9

|

.66
.78
.90
42
.70
.00
.50
.30
.22
.91

.93
.76

.80
.50

.60
.20
.90
.80
.89
.00
.00

.00

.98
.95
.95
.97
.00

.98
.97

.97

.99
.00

.99
.99
.00

.98

B; = 0.075
v T
.0000 0.78
.8530 .86
.2330 2.78
.0618 7.77
.0242 12.70
.0135 15.20
.0097 16.10
.0091 16.10
.0115 15.10
.0134 13.00
.0324 10.20
.0510 7.93
.0625 6.95
.0598 7.15
.0192 8.08
.0388 9.28
.0317 10.30
.0278 11.00
.0263 11.30
.0269 11.20
.0289 10.30
.0318 10.30
L0347 9.89
.0368 9.58
.0378 9.46
L0374 9.53
.0363 9.71
.0350 9.92
.0339 10.10
.0332 10.20
.0330 10.20
.0333 10.20
.0337 10.10
.0342 10.00
.0346 9.95
.0348 9.91
.0349 9.91
.0347 9.93
.0345 9.90
.0343 10.00
L0341

.0340

.0340

.0341

.0342

.0343

.0344 9.99
L0344 9.98
L0344 9.98
L0344 9.99
.0343 10.00
L0343 10.00
.0342 9.97




TABLE V.- EFFECT OF MULTIPLE TEMPERATURE CONSTRAINTS

ON HEATED TRIANGULAR PLATE

[NG = 1.0; Bi = 0]

(a) Single constraint

[Te3 = 10.0]

Iteration v Taq = Too Te3
0 0.5000 0.38 0.53
1 .5140 .36 51
2 .1180 1.57 2.21
3 .0266 6.97 9.76
Y .0125 14.80 20.70
5 .0123 15.00 20.90
6 .0176 10.50 14.50
7 .0255 7.25 10.00
8 .0307 6.03 8.31
9 .0307 6.03 8.29

10 .0279 6.63 9.08
11 .0254 7.29 9.97
12 .0242 7.66 10.40
13 L0241 7.69 10.40
14 L0247 7.54 10.20
15 .0252 7.38 9.99
16 .0255 7.32 9.87
17 .0254 7.34 9.87
18 .0252 7.40 9.93
19 .0251 7.47 9.99
20 .0250 7.41 10.00
21 .0249 7.41 10.00
22 .0249 7.45 10.00
23 .0250 747 9.99
24 .0249 7.43 10.00
25 .0249 7.43 10.00
(a) .0252 T.41 9.99

a0btained by method of references 9 and 10.
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TABLE V.- Concluded

(b) Multiple constraints

[Tez = 10.0; Toqp = Tep = 5.0]

Iteration v Ta1 = T2 To3
0 0.5000 0.38 0.53
1 .8120 .21 .33
2 .2070 .81 1.33
3 .0409 4,07 6.80
4 .0160 10.30 17.50
5 .0142 11.60 20.00
6 .0200 8.19 14.30
7 .0301 5.43 9.62
8 .0381 4. .27 7.67
9 .0393 4.13 7.48

10 .0360 4.u9 8.22
11 .0325 4.96 9.16
12 .0307 5.25 9.77
13 .0304 5.29 9.91
14 .0310 5.17 9.74
15 .0318 5.04 9.54
16 .0323 4.96 9.4y
17 .0323 4.95 9.45
18 .0321 4.97 9.52
19 .0319 5.00 9.59
20 .0318 5.02 9.64
21 .0318 5.02 9.66
22 .0318 5.01 9.66
23 .0318 5.00 9.66
24 .0319 9.67
25 .0319 9.69
26 .0318 9.71
27 9.73
28 9.75
29 9.77
30 9.78
31 9.80
32 .0319 9.81
33 .0319 9.83
34 .0318 9.85
35 .0318 9.88
36 .0318 9.91
37 .0318 9.93
38 L0317 9.95
39 L0317 9.97
40 .0317 9.98
41 -0317 9.99
42 .0317 9.99
43 .0316 10.00
Ly .0316 % 10.00
45 .0316 10.00
(a) .0312 4.96 9.94

30btained by method of references 9 and 10.

—



TABLE VI.- NODAL TEMPERATURE DISTRIBUTION FOR COMBINED
PLATE-BAR PROBLEM

[Constraint: T £ 2609 C (5000 F) for all nodal points]

Nodal coordinates
Temperature
X y

cm in. cm in. ocC O
0.00 0.00 0.00 0.00 260 500
1.91 .75 .00 .00 211 L11
3.81 1.50 .00 .00 105 221
5.72 2.25 .00 .00 211 L11
7.62 3.00 .00 .00 260 500
.00 .00 1.91 .75 258 497
1.91 .75 | 1.91 .75 193 380
3.81 | 1.50 | 1.91 .75 92 198
5.72 2.25 1.91 .75 193 380
7.62 3.00 1.91 .75 258 L97
.00 .00 3.81 1.50 129 264
1.91 .75 3.81 1.50 111 231
3.81 1.50 3.81 1.50 54 130
5.72 2.25 3.81 1.50 111 231
7.62 3.00 3.81 1.50 129 264
.00 .00 5.72 2.25 259 499
1.91 ) 5.72 2.25 244 472
3.81 1.50 5.72 2.25 21 70
5.72 2.25 5.72 2.25 244 72
7.62 3.00 5.72 2.25 259 4g9q
.00 .00 7.62 3.00 -18 0
1.91 .75 7.62 3.00 -18 0
3.81 1.50 7.62 3.00 -18 0
5.72 2.25 7.62 3.00 -18 0
7.62 3.00 7.62 3.00 -18 0
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Figure 2.- Effects of parameter b for fin problem, five-element solution.
NG = 1.0 Bi = 0; TO = 0.3.
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Figure 3.~ Finite-element convergence studies for fin problem.
Ng = 1.0; By = 0; Te = 0.3.
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Figure 4.- Area distribution for fin problem.
Ng = 1.0; Bj =2 0; T, = 0.3.
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Figure 5.- Temperature distribution for fin problem.

Ng = 1.0; By = 0; T, = 0.3.
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Figure 6.- Effects of convection for fin problem.
Ng = 1.0; To =0.3; T, = 0.05.
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Figure 11.- Effect of convection_on square plate.

Ng = 1.0; To = 10.0; Ty = 5.0.
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Figure 15.- Combined plate-bar problem. Heat flux, 34.1 kW/m?
(10 800 Btu/fté-hr). (Dimensions in cm (in.).)

40



0.91 (0.36)

!
+

Line of symmetry e

\—
Line of symmetry ]

|

1.93 (0.76)

A

0.96 (0.38) —> |«

Figure 16.~ Material distribution for combined plate-bar problem.

(Dimensions in ecm (in.).)

41



00000




NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $300

THIRD-CLASS BULK RATE

2 1 10,0,

DEPT OF THE AIR FoO

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION
451

100577 500903Ds
BCE

AF WEAPONS LABORATORY

ATTN: TECHNICAL LIBRAR
Y (su
KIRTLAND AFB NM 87117 (500

If Undeliverable (Section 158

POSTMASTER:  pogtal Manual) Do Not Return

*The aerona. s

conducted so as
edge of phenome..

? activities of the United States shall be
... to the expansion of human Enowl-
atmosphere and space. The Administration

shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a

contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcepooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



